
Introduction
This performance measurements were triggered by a competing company (AidAim) publishing the same benchmark comparing their
SQLMemTable with kbmMemTable, ClientDataset and DBISAM3's memtable.

Since kbmMemTable is a vital part of many applications all over the world, C4D saw not other alternatives than to check what was the reasons for
the performance differences, how does the performance look for other sized datasets and how could kbmMemTable be improved.

As will be shown in these measurements, kbmMemTable Std 4.01 and kbmMemTable Pro 4.01 performs very well in addition to being some of the
most feature rich memorytables for the Borland community today.

Benchmarking is always a 'tricky' business in many ways. Its very difficult to select what to benchmark and how giving all parties a fair treatment.
That was what happened in the original benchmark published by AidAim. The benchmark used for these tests are actually the same benchmark,
although optionally (via $DEFINE's} slightly modified to be more fair to all parties (like not benchmarking screenupdates, allowing equal type of
string comparisons etc.
But the benchmark is still not good enough. It is still a synthetic test, and time is still spend generating test data while benchmarking etc. Which all
affect the end results. It may affect all tests equally, but if you then calculate how much faster one table is compared to another in that specific test,
you will not get a correct result, since both results have been offset with a constant amount. (eg. 5 and 10 as percentage is not the same as 10 and
15 (offsetting the values with 5)

Benchmark 1.000 records
Test operation SQLMemTable v. 1.02 kbmMemTable v. 4.01 kbmMemTable v. 4.01 kbmMemTable Pro v. 4.01 kbmMemTable Pro v. 4.01
All measurements in 1/1000 secs (ms) Batch index updates Batch index updates
1) Insert wo indexes 188 125 125 125 109
2) Edit wo indexes 250 110 125 109 141
3) Locate by ID wo indexes 157 171 141 156 125
4) Locate by FInteger wo indexes 187 110 109 94 78
5) Locate by FString wo indexes 250 609 594 203 141
6) Delete wo indexes 141 47 47 63 31
7) Append wo indexes 203 125 125 125 125
8) Closetable wo indexes 0 0 0 0 0
9) Insert with indexes 203 157 141 156 141
10) Edit with indexes 266 203 141 157 140
11) Locate by ID with indexes 156 78 62 78 63
12) Locate by FInteger with indexes 203 94 78 94 78
13) Locate by FString with indexes 235 93 110 78 78
14) Delete with indexes 140 94 46 78 63
15) Append with indexes 235 156 157 140 125
16) Closetable with indexes 0 0 0 0 0

2814 2172 2001 1656 1438

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 m
s

(s
m

al
le

r i
s

be
tte

r)

Test

Performance

SQLMemTable v. 1.02
kbmMemTable v. 4.01
kbmMemTable v. 4.01 Batch index updates
kbmMemTable Pro v. 4.01
kbmMemTable Pro v. 4.01 Batch index updates

Benchmark 10.000 records
Test operation SQLMemTable v. 1.02 kbmMemTable v. 4.01 kbmMemTable v. 4.01 kbmMemTable Pro v. 4.01 kbmMemTable Pro v. 4.01
All measurements in 1/1000 secs (ms) Batch index updates Batch index updates
1) Insert wo indexes 891 954 844 906 828
2) Edit wo indexes 844 843 828 906 813
3) Locate by ID wo indexes 531 188 172 219 125
4) Locate by FInteger wo indexes 422 187 156 172 109
5) Locate by FString wo indexes 1047 907 859 218 156
6) Delete wo indexes 156 171 156 125 109
7) Append wo indexes 859 860 860 922 844
8) Closetable wo indexes 0 15 0 0 16
9) Insert with indexes 1500 1375 1063 1125 890
10) Edit with indexes 2015 1813 1000 1281 875
11) Locate by ID with indexes 157 78 63 78 63
12) Locate by FInteger with indexes 187 94 78 94 78
13) Locate by FString with indexes 250 125 125 109 94
14) Delete with indexes 781 562 141 297 109
15) Append with indexes 1469 1297 1125 1078 890
16) Closetable with indexes 0 16 0 0 0

11109 9485 7470 7530 5999

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 m
s

(s
m

al
le

r i
s

be
tte

r)

Test

Performance

SQLMemTable v. 1.02
kbmMemTable v. 4.01
kbmMemTable v. 4.01 Batch index updates
kbmMemTable Pro v. 4.01
kbmMemTable Pro v. 4.01 Batch index updates

Benchmark 40.000 records
Test operation SQLMemTable v. 1.02 kbmMemTable v. 4.01 kbmMemTable v. 4.01 kbmMemTable Pro v. 4.01 kbmMemTable Pro v. 4.01
All measurements in 1/1000 secs (ms) Batch index updates Batch index updates
1) Insert wo indexes 3594 4484 3359 3422 3156
2) Edit wo indexes 3281 3172 3188 3296 3203
3) Locate by ID wo indexes 500 172 187 188 156
4) Locate by FInteger wo indexes 500 203 188 203 156
5) Locate by FString wo indexes 1110 907 875 219 188
6) Delete wo indexes 390 1312 1328 238 265
7) Append wo indexes 3313 3265 3500 3422 3141
8) Closetable wo indexes 0 16 16 15 16
9) Insert with indexes 6469 9578 4718 4782 3672
10) Edit with indexes 8312 13375 4735 5593 3688
11) Locate by ID with indexes 156 78 78 79 78
12) Locate by FInteger with indexes 203 94 94 109 93
13) Locate by FString with indexes 266 140 125 109 94
14) Delete with indexes 3313 4922 1265 1297 266
15) Append with indexes 5968 6500 4688 4656 3687
16) Closetable with indexes 0 16 31 0 16

37375 48234 28375 27628 21875

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 m
s

(s
m

al
le

r i
s

be
tte

r)

Test

Performance

SQLMemTable v. 1.02
kbmMemTable v. 4.01
kbmMemTable v. 4.01 Batch index updates
kbmMemTable Pro v. 4.01
kbmMemTable Pro v. 4.01 Batch index updates

Benchmark 100.000 records
Test operation SQLMemTable v. 1.02 kbmMemTable v. 4.01 kbmMemTable v. 4.01 kbmMemTable Pro v. 4.01 kbmMemTable Pro v. 4.01
All measurements in 1/1000 secs (ms) Batch index updates Batch index updates
1) Insert wo indexes 10218 20375 7968 8188 7875
2) Edit wo indexes 8141 7688 7641 7828 7609
3) Locate by ID wo indexes 516 187 156 110 141
4) Locate by FInteger wo indexes 546 203 157 125 171
5) Locate by FString wo indexes 1079 906 812 157 204
6) Delete wo indexes 1062 10172 7406 656 531
7) Append wo indexes 8125 8093 7984 8250 7625
8) Closetable wo indexes 0 47 47 31 47
9) Insert with indexes 17656 68906 11610 11250 9407
10) Edit with indexes 21594 104438 11781 14141 9453
11) Locate by ID with indexes 157 78 78 94 78
12) Locate by FInteger with indexes 218 93 94 94 94
13) Locate by FString with indexes 297 141 125 94 93
14) Delete with indexes 8688 54094 8062 2953 563
15) Append with indexes 15703 34281 11672 11422 9547
16) Closetable with indexes 0 78 63 47 32

94000 309780 75656 65440 53470

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 m
s

(s
m

al
le

r i
s

be
tte

r)

Test

Performance

SQLMemTable v. 1.02
kbmMemTable v. 4.01
kbmMemTable v. 4.01 Batch index updates
kbmMemTable Pro v. 4.01
kbmMemTable Pro v. 4.01 Batch index updates

Benchmark 1.000.000 records
Test operation SQLMemTable v. 1.02 kbmMemTable v. 4.01 kbmMemTable v. 4.01 kbmMemTable Pro v. 4.01 kbmMemTable Pro v. 4.01
All measurements in 1/1000 secs (ms) Batch index updates Batch index updates

Operates, but is taking a very long time

1) Insert wo indexes 272797 82204 90625 87281
2) Edit wo indexes 85875 81250 93422 89765
3) Locate by ID wo indexes 469 203 125 109
4) Locate by FInteger wo indexes 516 219 125 141
5) Locate by FString wo indexes 1063 875 157 172
6) Delete wo indexes 7734 3254781 9578 7578
7) Append wo indexes 83359 80422 92234 85531
8) Closetable wo indexes 0 500 734 516

Operates, but is taking a very long time

Crashed after inserting

20% with 'out of memory'

9) Insert with indexes 135953 141906 125453
10) Edit with indexes 131834 208172 127125
11) Locate by ID with indexes 79 94 94
12) Locate by FInteger with indexes 109 109 109
13) Locate by FString with indexes 141 110 110
14) Delete with indexes 3218812 61703 9031
15) Append with indexes 134328 144141 123547
16) Closetable with indexes 563 1016 500

7122273 844251 657062

Operates, but is taking a very long time

Crashed after inserting

20% with 'out of memory'

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 m
s

(s
m

al
le

r i
s

be
tte

r)

Test

Performance

SQLMemTable v. 1.02
kbmMemTable v. 4.01
kbmMemTable v. 4.01 Batch index updates
kbmMemTable Pro v. 4.01
kbmMemTable Pro v. 4.01 Batch index updates

Alternative 100.000 record benchmark
This benchmark uses the DBMemBenchmark with the defines PROGRESS undefined, and LOCATE_ALL defined.
What that means is that no progress bars will be updated, and the locate tests is performed the same number of times as the number of records in the benchmark.
That means instead of the locates are performed only 1000 times, they are in this alternative benchmark performed 10.000 times.

Test operation SQLMemTable v. 1.02 kbmMemTable v. 4.01 kbmMemTable v. 4.01 kbmMemTable Pro v. 4.01 kbmMemTable Pro v. 4.01
All measurements in 1/1000 secs (ms) Batch index updates Batch index updates
1) Insert wo indexes 704 750 672 672 672
2) Edit wo indexes 703 672 640 657 640
3) Locate by ID wo indexes 41172 14453 14125 11187 10250
4) Locate by FInteger wo indexes 7609 2343 1860 2156 1485
5) Locate by FString wo indexes 93312 73829 71437 14250 13422
6) Delete wo indexes 63 15 16 32 15
7) Append wo indexes 703 688 703 718 656
8) Closetable wo indexes 0 0 0 0 16
9) Insert with indexes 1297 1109 922 828 734
10) Edit with indexes 1703 1500 907 938 766
11) Locate by ID with indexes 750 125 125 125 125
12) Locate by FInteger with indexes 1063 218 203 187 203
13) Locate by FString with indexes 1625 407 406 235 235
14) Delete with indexes 609 343 31 140 15
15) Append with indexes 1266 1000 906 829 735
16) Closetable with indexes 0 16 16 0 15

152579 97468 92969 32954 29984

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e
in

 m
s

(s
m

al
le

r i
s

be
tte

r)

Test

Performance

SQLMemTable v. 1.02
kbmMemTable v. 4.01
kbmMemTable v. 4.01 Batch index updates
kbmMemTable Pro v. 4.01
kbmMemTable Pro v. 4.01 Batch index updates

Notes
1) SQLMemTable do not handle locale specific indexes why the kbmMemTable tests equally was performed on non localized strings.

2) The testsuite was changed slightly from the original one published by AidAim to include Append and table close
(should have been EmptyTable, but SQLMemTable failed that)

3) Further the test suite contans a BATCH definition which can be enabled or disable depending on if the kbmMemTable test should
be performed with or without batch index handling.

4) All tests have been performed on a P4 2.6Ghz with 512MB RAM, running XP Home Edition. The suite was compiled with
Delphi 7 with optimizations enabled.

5) The testsuite is in reality not extremely fair to any of the products with respect to real time measurements since the loops contain lots of
Application.HandleMessage and other such stuff which influence the time measurements.
Since both the SQLMemTable and kbmMemTable tests are subject to that, a comparison between the two is still possible.

6) kbmMemTable was run in Performance mode pfFast.

7) Benchmarking with 1 million records ended up in an out of memory exception for SQLMemTable while inserting with indexes.

8) If you run a non SQLMemTable test first and then the SQLMemTable test afterwards, SQLMemTable do not correctly show numbers for non indexed
operation. This is due to a bug in SQLMemTable v. 1.02.

Conclusions

For most practical uses of a memtable, kbmMemTable Std. v. 4.01 performs significantly better than SQLMemTable even without batch indexing. In lots
of real life uses, one would use batch indexing in which case kbmMemTable often performs the operation in half the time taken by SQLMemTable.

On extremely large amounts of records (>50.000), kbmMemTable without batched indexes is hurt by the fact that each update/insert/delete results in
rearranging a Tlist, while SQLMemTable internally uses another type of linked storage not hurt as severely in these situations.
With batched indexes, kbmMemTable however do not suffer as severely from that problem except when deleting records the way this benchmark does,
deleting all records using the delete method, one by one. One would usually use EmptyTable or Close in this situation.

kbmMemTable Pro 4.01 outperforms SQLMemTable in several cases with more than 800%, and on average around 50% on the locate limited tests. On
the alternative test where the full range of records are being located, kbmMemTable Pro 4.01 performs SQLMemTable v. 1.02 with 400%

kbmMemTable Pro 4.01 is freely available for all holders of kbmMW commercial licenses
kbmMemTable Std 4.01 is freely available and open source.

Get the latest versions from www.components4developers.com

	Intro
	Benchmark 1.000 records
	Benchmark 10.000 records
	Benchmark 40.000 records
	Benchmark 100.000 records
	Benchmark 1.000.000 records
	Alt. 100.000 records
	Notes
	Conclusions

